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Our flow-visualization and spectral studies of spherical Couette flow between two 
concentric spheres with only the inner sphere rotating for the clearance ratio (or gap 
ratio) 0.14 where the Taylor instability occurs have been pursued to systematically 
explore how and why a variety of wavenumbers and rotation frequencies of the non- 
axisymmetric periodic disturbances occurs at the same supercritical Reynolds number. 
The observed periodic disturbances constitute six kinds of disturbances : spiral TG 
(Taylor-Gortler) vortices, twists developing within toroidal TG vortices, both 
unmodulated and modulated waves travelling on the TG vortices, and both Stuart 
vortices and shear waves developing within the Ekman-type secondary flow. 
Development of these disturbances depends strongly on the flow mode at the initial 
Reynolds number (initial flow mode) and on the Reynolds-number evolution process 
approaching the final Reynolds number (acceleration rate and history of the Reynolds 
number). In our previous studies (Nakabayashi 1983 ; Nakabayashi & Tsuchida 1988a, 
b), we clarified the structures, wavenumbers and rotation frequencies of the periodic 
disturbances caused by a quasi-static increasing of the Reynolds number. In the present 
study, we consider how the characteristics of periodic disturbances depend on the 
following three factors : (i) the rate of increase of the Reynolds number; (ii) the number 
of toroidal vortices in an initial flow mode; and (iii) the quasi-static Reynolds-number 
history. The flow modes observed in the present study are all stable to small 
perturbations, and the transitions among the flow modes are reproducible. 

1. Introduction 
Spherical Couette flow between two concentric spheres with only the inner sphere 

rotating shows a spectral laminar-turbulent transition, like circular Couette flow with 
only the inner cylinder rotating. The spectral transition of circular and spherical 
Couette flows has attracted attention, because the transition scenario observed in 
experiments was in good agreement with the new theory of Newhouse, Ruelle & 
Takens (1978). In both Couette flows, development of the periodic disturbances 
observed in higher flow modes depends strongly on the flow mode at the initial 
Reynolds number and on the Reynolds-number evolution process approaching the 
final Reynolds number. Therefore, a remarkable variety of higher flow modes occurs 
at the same supercritical Reynolds number through various initial flow modes and 
Reynolds-number evolutions. Study of the characteristics of higher flow modes 
provides insight into the physical mechanisms responsible for the spectral transition 
described above. 

Such characteristics were first revealed by Coles (1965) in circular Couette flow. He 
observed at the same Reynolds number as many as 26 distinct stable flow modes with 
a different number of Taylor vortices and/or a different wavenumber of azimuthal 
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waves travelling on the Taylor vortices. The 26 modes in the Taylor and wavy Taylor 
vortex flows were obtained by a.pproaching the final Reynolds number with different 
acceleration rates of the inner cylinder rotation and/or by rotating and then stopping 
the outer cylinder. Following this, Gorman & Swinney (1982) and Rand (1982) showed 
that the azimuthal waves have a variety of modulation patterns at the same Reynolds 
number. Subsequently, King et al. (1984) and Marcus (1984a, b) clarified that the wave 
speed (rotation frequency) detected at the same Reynolds number for the unmodulated 
or modulated azimuthal waves differs with the number of Taylor vortices or the 
wavenumber of the azimuthal waves. 

Sawatzki & Zierep (1970) were the first to reveal a variety of higher flow modes for 
spherical Couette flow. They observed up to five distinct stable flow modes showing 
different friction torques at the same supercritical Reynolds number in the case of small 
clearance ratios where the Taylor instability occurs. The five flow modes include 
toroidal or spiral TG vortices (refer to figure 1 for the structure) and/or Stuart vortices 
developing near the pole in the Ekman-type secondary flow (figures 8 and 9). 
Subsequently, Wimmer (1 976, 1988) showed experimental results indicating that the 
variety of the above five flow modes is caused by the difference in the acceleration time 
taken to increase the inner sphere rotation; in other words, by the difference in the rate 
of increase of the Reynolds number. Wimmer suggested the following explanation for 
the results: the instability leading to each flow mode requires a particular amount of 
energy or angular momentum which corresponds to the friction torque measured in 
each flow mode; consequently the instability depends on the acceleration time during 
which the required energy or angular momentum is supplied. Wimmer also showed an 
extensive range of higher flow modes obtained by an increase and/or a decrease of the 
Reynolds number. 

Yavorskaya et al. (1980) observed various higher flow modes which include, in 
addition to the TG vortices described above, travelling waves developing on these 
vortices and/or a sinusoidal disturbance developing at the equator. The variations 
were obtained not only by different accelerations of the inner sphere rotation but also 
by special initial perturbations produced by a temporary rotation of the outer sphere. 
Subsequently, Buhler & Zierep (1987) investigated experimentally the transition 
processes from the initial flow modes with different numbers of toroidal vortex cells, 
and revealed a hysteresis phenomenon in which shear waves developing almost 
throughout the entire Ekman-type secondary flow (refer to figures 1 and 9) have 
different wavenumbers and rotation frequencies at the same Reynolds number. 

In numerical studies, on the other hand, various axisymmetric higher flow modes 
with toroidal TG vortices have been simulated by many researchers such as Bonnet & 
Alziary de Roquefort (1976), Yavorskaya et al. (1980), Bartels (1982), Dennis & 
Quartappelle (1984), Marcus & Tuckerman (1987a, b), and Buhler (1990). The 
simulated results concerning friction torques and vortex sizes were in satisfactory 
agreement with the experimental results described above. However, non-axisymmetric 
higher flow modes such as periodic, quasi-periodic and aperiodic flow modes have been 
simulated only recently. 

As already mentioned, the higher flow modes in spherical Couette flow include spiral 
vortices, Stuart vortices and shear waves, in addition to unmodulated and modulated 
travelling waves (Nakabayashi & Tsuchida 1988b) which are similar to those in 
circular Couette flow. Therefore, various higher flow modes appear more extensively 
in spherical Couette flow than in circular Couette flow. However, the relations among 
this extensive variety of spherical Couette flows, with respect to wavenumbers and 
rotation frequencies of the above periodic disturbances, has not been considered at all. 
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FIGURE 1. Spiral TG vortices, travelling waves and/or shear waves included in (a) a wavy toroidal and 
spiral TG vortex flow (I11 WTS in table 1) and (b) a wavy toroidal TG vortex flow with shear waves 
(IV WTS,) in the spherical Couette system with the inner sphere rotating and the outer sphere at rest 
(Nakabayashi & Tsuchida 1988 a). These non-axisymmetric disturbances move in the azimuthal 
direction with each rotation frequency in the laboratory. 

The present study was designed to systematically explore how and why such a variety 
of wavenumbers and rotation frequencies occurs in supercritical spherical Couette 
flow. We have considered how the characteristics of periodic disturbances in higher 
flow modes depend on the following three factors: (i) the rate of increase of the 
Reynolds number; (ii) the number of toroidal vortex cells in an initial flow mode; and 
(iii) the Reynolds-number history. 

The non-axisymmetric higher flow modes such as periodic, quasi-periodic and 
aperiodic flow modes have only just begun to be simulated, as stated previously. 
Therefore, our experimental study can serve as a useful guide for forthcoming 
theoretical and numerical studies. In the future, combined experimental-numerical 
studies will provide insight into the physical mechanisms responsible for the transitions 
which occur at higher Reynolds numbers. 

2. Experimental techniques 
A spherical Couette system with the inner sphere rotating and the outer sphere at 

rest is characterized by two external coptrol parameters: clearance ratio /3 = 
(R2-  R,)/R, and Reynolds number Re = 2nf0 R:/v, where R ,  and R,  are the inner- and 
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FIGURE 2. Experimental apparatus for the simultaneous spectral and flow-visualization measurements 
of the intensity of laser light scattered by the aluminium flakes used in flow visualization. 8 is the 
meridian angle (colatitude). 

outer-sphere radii, fo is the rotation frequency of the inner sphere, and Y is the 
kinematic viscosity. Our spherical Couette system (figure 2), presented in detail by 
Nakabayashi (1983), has R, = 76.89 f 0.01 mm and R, = 87.65 k 0.01 mm, giving /3 = 
0.14. The initial flow mode and the Reynolds-number evolution process taken to 
investigate the effects of the three factors described previously are given in each section. 
The controllable minimum increment or decrement of a reduced Reynolds number R*, 
defined as RelRe,, was about 0.01 in our spherical Couette system, where the critical 
Reynolds number Re, of the Taylor instability was 880. In a quasi-static increase or 
decrease of R*, except in the cases of faster changes of the Reynolds number treated 
in $3, the absolute rate of increase or decrease of R* was kept at less than 0.0009 s-l 
so that no shifts were discernible in the transition Reynolds numbers among flow 
modes. 

Wavenumbers and rotation frequencies of periodic disturbances were identified by 
simultaneous spectral and flow-visualization measurements, as described by Naka- 
bayashi 8z Tsuchida (1988a, b). The spectral resolution AJ defined as 2fN/Nd,  in the 
frequency analysis was kept in the range 0.005-0.01 for the Nyquist frequency fN = 
1&20 and the number of time series records of scattered-light intensity detected at a 
fixed point in the laboratory was Nd = 2048 or 4096. Hence, the frequency of each 
disturbance passing the fixed point, i.e. the fundamental frequency of the velocity 
fluctuation caused by each disturbance, was resolved to within less than 0.01. 
Consequently, the rotation frequency of each disturbance, i.e. the fundamental fre- 
quency divided by the wavenumber, was resolved to within less than 0.01 /wavenumber. 
In the present study, the frequencies denoted without hats c) are all scaled by the inner- 
sphere rotation frequency f ,  (hatted variables are always dimensional). 
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3. Influence of the rate of increase of the Reynolds number 
We consider the influence of the rate of increase of the Reynolds number on higher 

flow modes by taking a temporal evolution of the reduced Reynolds number R* as 
shown in figure 3. The R* value is first increased from zero at time T = 0 to a specific 
value Ri( = 2nfs R;/(v Re,)) at T = T, with a constant rate of increase A*( = R;/TJ, 
and then kept constant at RX for T 2 T, or 2 0. T, and q( = T -  T,) are the time 
required for the increase and the elapsed time after the increase, respectively. These 
times are all scaled by a viscous diffusion time f D  defined as (R2- R,)2/v(T = f / f D ,  

T, = f s / f D ,  etc.). The viscous diffusion time is related to the development of the 
TG vortices, because that development is due to diffusion of the vorticity produced 
by the inner-sphere rotation. 

In the above Reynolds-number evolution, generally the flow mode or regime 
changed not only during the increase (0 < T < T,) but also after it (T  2 T, or 2 0), 
and finally stopped changing. We call the unchanged flow mode observed for q + co 
the final flow mode hereafter. Figure 4 shows a succession of transitions of the flow 
modes with an increase of q at various Ri values in the case of R* = 10-0.054. For 
RZ = 2, for example, the transition from a toroidal vortex flow with four vortices 
(labelled I1 T(N = 4) as described below) to a wavy vortex flow with four vortices and 
six travelling azimuthal waves (I11 WT(N = 4, m = 6))  occurs at q x 2, and the 
transition to a modulated wavy vortex flow mode with four vortices and six modulated 
travelling waves (I11 MWT(N = 4, m = 6 ,  k = l)), which becomes the final flow mode, 
occurs at & x 3. 

We now explain the terms ‘flow regime’ and ‘flow mode’ used in the present paper. 
There are four flow regions I-IV in the laminar-turbulent transition of spherical 
Couette flow: a laminar basic-flow region I, a TG vortex-flow region 11, a transition 
region I11 and a turbulent flow region IV. The flow regime shows ‘flow region’+ ‘kinds 
of disturbances’, and the flow mode shows ‘the flow regime’+‘wavenumbers of the 
disturbances’. All flow regimes observed in the present study are shown in table 1 with 
their abbreviations and characteristics. The first abbreviation symbol, e.g. I11 of 
I11 MWT, indicates the above-mentioned flow region. The second symbol, MWT, 
indicates the kinds of disturbances shown in table 2. Seven kinds of disturbances were 
observed in the present study. The fundamental frequencies f,, f,, . . . represent 
frequencies of the disturbances passing a fixed point in the laboratory. The symbols S,, 
S,, Tw and m represent wavenumbers of the disturbances; S ,  = x-y  indicates the 
number of spiral vortex pairs, x pairs in the northern hemisphere and y pairs in the 
southern hemisphere; N is the number of toroidal vortex cells (i.e. N/2 is the number 
of vortex pairs) in both hemispheres; k is a parameter characterizing a modulation 
pattern of travelling azimuthal waves as follows. k is related to the phase angle A$ 
between the modulation of successive azimuthal waves (m waves) by A$ = 2nk/m. 
Here, k = - 1 and m = 6 shown in figure 4 mean that six successive waves are 
modulated in sequence in the direction opposite to the wave rotation. Because A$ is 
given by A$ = -2n/6 and IA$I is equal to the azimuthal angle 2n/m of one wave, 
waves 1,  6,  5 ,  4, 3, 2 successively flatten, as shown in figure 14 in Nakabayashi & 
Tsuchida (19886). 

Figure 5 shows how the final flow modes at various RZ values depend on the rate of 
increase R* (the wavenumbers of disturbances are given in the caption). The final flow 
mode for 1 < Rg < 1.13,  which is a toroidal vortex flow (I1 T(N = 2)) developed by the 
primary instability, is independent of the R* value. However, the final flow modes 
for R: 2 1.13 depend on the R* value, so their variety can be seen. In the range 
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FIGURE 3. The time ( T )  history of the reduced Reynolds number R*: R* is R*T for 0 < T < T, and 
RQ for T 2 T,, where R*( = RQ/T,) is the rate of increase of the Reynolds number. This was used to 
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FIGURE 4. A succession of transitions of the flow modes with an increase of T, at various RQ values 
for R* = 10-0.054. Refer to tables 1 and 2 for the flow regimes IIT, IIIWT, IIIMWT, ... and the 
wavenumbers N ,  m, . . . of disturbances, respectively. 
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Characteristics 

Laminar flow + secondary flow (laminar basic flow) 
Laminar flow + toroidal TG vortex +secondary flow 
Laminar flow + spiral and toroidal TG vortices + secondary flow 
Laminar flow + secondary flow (supercritical basic flow) 
Laminar flow +modulated wavy toroidal TG vortex + secondary flow 
Laminar flow + secondary flow with shear waves 
Laminar flow + toroidal TG vortex with strong circulation + secondary flow 
Laminar flow+ toroidal TG vortex+ secondary flow with a Stuart vortex 
Laminar flow + twisted toroidal TG vortex + secondary flow with Stuart vortices 
Laminar flow + wavy spiral TG vortex + secondary flow 
Laminar flow + wavy toroidal TG vortex + secondary flow 
Laminar flow + wavy toroidal and spiral TG vortices + secondary flow 
Turbulent flow + secondary flow with shear waves 
Turbulent flow + wavy toroidal TG vortex + secondary flow with shear waves 

TABLE 1. Abbreviations for and characteristics of all flow regimes observed 

Label Kind of disturbance 
Fundamental 

Symbol frequency 

M Modulation of travelling waves k f M  

S Spiral TG vortices ( S N ,  S,) s, = x-y f ,  

fu St 

Tw Twists within toroidal TG vortices Tw f T  

W Travelling waves rn fw 

s, Shear waves S H  fH 

- 
Stuart vortices ST 
Toroidal TG vortices N T 

TABLE 2. Kinds, wavenumbers and fundamental frequencies of all disturbances. k is a modulation 
parameter; S,, = x-y indicates the number of spiral TG vortex pairs, x pairs in the northern 
hemisphere and y pairs in the southern hemisphere; N is the number of toroidal TG vortex cells in 
both hemispheres. f M ,  f s ,  . . . represent the fundamental frequencies of the velocity fluctuation caused 
by periodic disturbances. S,  and S, indicate the spiral TG vortices which occur in the northern and 
southern hemispheres, respectively. 

1.13 < RB 5 1.7, we obtained two final flow modes, a singly periodic toroidal and 
spiral vortex flow (I1 TS(N = 2, S,  = 3 - 3)) and a toroidal vortex flow (I1 T(N = 4)), 
because six pairs of spiral vortices or a pair of toroidal vortices develop additionally 
in the above-described flow mode I1 T(N = 2) for a small or large rate of increase. This 
result shows that the larger rate of increase, i.e. the shorter increase time, still makes 
the vortex structure stationary. 

In the range 1.7 5 RX 5 2.5, we obtained two doubly periodic flow modes as the 
final flow mode : a modulated wavy toroidal flow (I11 MWT(N = 4, m = 6 ,  k = - 1)) 
and a wavy toroidal and spiral flow (I11 W T S ( N  = 2, m = 6 ,  S ,  = 3 - 3)), where the 
wave modulation occurs only in the absence of spiral TG vortices. 

For RB 2 2.5, doubly periodic, singly periodic, intermittent and/or time- 
independent flow modes occur, depending on the d* value. For larger rates of increase 
(d* a doubly periodic flow mode, I11 WTS,(N = 2, m = 6 ,  S ,  = 1 - O ) ,  
I11 WTS,(N = 2, m = 6 ,  S ,  = 0 - 1) or I11 W S ( m  z 6 ,  S ,  = 1 - l), occurs. For smaller 
rates (d* 5 loo), however, a singly periodic flow mode (I11 W T ( N  = 4, m = 6))  occurs. 
Particularly for smaller rates (k* 5 10-0.5) in the range 2.64 5 RB 5 2.8, an intermittent 
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FIGURE 5. Dependence of final flow modes on R* and R:. Present data for /3 = 0.14: 0, 11T(N = 
2); El, IITS(N=2,  S p = 3 - 3 ) ;  0, IIT(N=4);  Q, IIIWTS(N=2, m = 6 ,  S p = 3 - 3 ) ;  0, 
IIIMWT(N= 4, m = 6, k = -1); x ,  IIIWT(N= 4, m = 6); 0, IIIMWT(N= 4, m = 6, k = - l ) +  
I11 WT(N = 4, m = 6); A, 111 WTS,(N = 2, m = 6, S ,  = 1 -0); 0, I11 WTS,(N = 2, rn = 6, S ,  = 
0-1); 0,  IIIWS(mr6,  S p =  1-1); 0, IIIB. Wimmer's (1976) data for P=O.18:  1 ,  mode I 
[corresponds to I11 B]; 2, indistinct mode; 3, mode 111 [I1 T(N = 2)]; 4, mode IV [I1 T(N = 4)]; 5, 
mode V [probably I11 WS]. R: is the lower limit of the Reynolds number at which the I11 B regime 
was observed for /3 = 0.14 by Yavorskaya et al. (1980). 

flow mode (I11 MWT(N = 4, m = 6, k = - 1) + I11 WT(N = 4, m = 6)) appears, where 
six travelling waves are modulated and unmodulated at intervals of several minutes. 
This intermittent wave modulation is the same as that reported in Nakabayashi & 
Tsuchida (1988 b). Such a temporally repeating phenomenon also occurs near the 
boundary (RB = 1.13) between I1 T(N = 2) and I1 T(N = 4), where the toroidal cell 
immediately next to the Ekman secondary flow in each hemisphere appears and 
disappears at the same intervals as the above case. These two temporally repeating 
phenomena do not occur for the case with spiral vortices. This fact shows that such an 
intermittency occurs only in the marginal states which strongly resist a spiral 
disturbance. On the other hand, for much larger rates of increase (&* 2 lo0.') for 
RB 2 3.3, a time-independent supercritical basic flow (IIIB) occurs which was also 
reported by Wimmer (1976) and Yavorskaya et al. (1980). The lower limit (RB z 3.3) 
of its occurrence in the present study agrees with that (R: = 3.3) reported by 
Yavorskaya et al. 

The five flow modes obtained for /3 = 0.18 by Wimmer (1976) are shown in domains 
1-5 in figure 5 : mode I (corresponding to the supercritical basic flow I11 B in the present 
study) in domain 1 ; mode I1 (two-vortex flow I1 T(N = 2)) in 3 ; mode IV (four-vortex 
flow 11T(N = 4)) in 4; mode V (probably wavy spiral vortex flow I11 WS) in 5 ;  and the 
indistinct mode in 2. It is evident from the comparison between the present results and 
Wimmer's that the rate of increase does not affect the range 1 < R: < 1.13 (I1 T(N = 
2)) for p = 0.14 but does affect all RB 2 1 for p = 0.18. 

Yavorskaya et al. (1980) conjectured that the occurrence of the supercritical basic 
flow (IIIB) described above was due to the large difference between the spin-up time 
and the viscous diffusion time. So we investigated the relationship among spin-up time 
(is, = (R, - R1)/(2nfS v ) ' . ~ ) ,  viscous diffusion time (iD = (R, - R,)2/vl, Reynolds- 
number increase time (is = Ts i,) and the final flow mode at RB( = 2nfs R:/ (v  Re,)) 
using the experimental results shown in figure 5.  The relationship is summarized in 
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FIGURE 6 .  The dependence of Reynolds-number and its rate of increase on the final flow modes shown 
in figure 5. t,, t ,  and t,, are acceleration time, viscous diffusion time and spin-up time, respectively, 
where t ,  = tip. 

figure 6, where the final flow mode is shown in the R:, t,  parameter plane; t ,  (= f,/f,,), 
t , ,  (= fsp/f0 = P R e y  R:0.5) and tD (= fD/foa= ti,) are the increase time, spin-up time 
and diffusion time, respectively, scaled by to = 1/(27rf,); the boundaries among the 
final flow modes were obtained from the transformation t ,  = PRe, RZ2/R*; and the 
limit of the present measurements is shown by the dotted line. The supercritical basic 
flow IIIB occurs only under the condition t ,  < tD for Rg 2 3.3 where the tD value is 
more than 7.5 times the t,, value. This result is explained as follows. The TG vortices 
appear for the large viscous diffusion time t,, as described previously, while the 
Ekman-type secondary flow develops for the shorter spin-up time I,,. Therefore, 
provided that the difference between the t,, and t ,  values is great, the Ekman-type 
secondary flow has time to redistribute the angular momentum in the spherical gap in 
such a way as to suppress the TG-type instability, and consequently the supercritical 
basic flow is observed. The variation of the other flow modes in the parameter plane 
also depends on the combination of t,, and tD values. 

4. The influence of the number of toroidal TG vortex cells in the initial 
flow mode 

In spherical Couette flow, we can observe two types of disturbances: cylinder and 
disk types. The cylinder-type disturbances, which are similar to those observed in 
circular Couette flow, are TG vortices and higher-order disturbances such as travelling 
waves and wave modulation which occur on/in the vortices. The disk-type 
disturbances, which are similar to the cross-flow-type disturbances developing in the 
Ekman boundary layer on a disk rotating in a casing, are both Stuart vortices and 
shear waves developing within the Ekman-type secondary flow. 

For P = 0.14, we observed flow modes with four, two or zero toroidal vortex cells 
( N  = 4, 2 or 0). As described later, the characteristics of the cylinder-type disturbances 
observed for N = 4 and 2 strongly depend on the value of N .  This is thought to be 
closely related to the result that the equator, at which centrifugal forces are greatest, 
is a vortex outflow boundary for N = 4 whereas it is a vortex inflow boundary for 
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FIGURE 7. Reynolds-number dependence of wavenumbers of the periodic disturbances observed in 
the quasi-static laminar-turbulent transition from three initial flow modes 111 B(N = 0), I1 T(N = 2) 
and 11T(N = 4) to R:uz = 20, where each N value remained constant until the R&z value. Refer to 
table 2 for the wavenumbers T,, S,, rn, . . . . The S ,  and rn values indicated by broken lines were 
unmeasurable owing to developing chaos. (a) N = 4. (b)  N = 2. ( c )  N = 0. 

N = 2. Also, the characteristics of the disk-type disturbances observed for N = 4, 2 
and 0 depend on N. This is connected with the fact that the extension of the Ekman- 
type secondary flow changes with N .  Hence, the direction of the secondary flow of 
the vortices and the extension of the Ekman-type secondary flow have a significant 
influence on the characteristics of disturbances in higher flow modes. To consider this 
influence, we investigate the N dependence of the characteristics of cylinder- and 
disk-type disturbances in this section. 

We first produced three initial flow modes, I1 T(N = 4), I1 T(N = 2) and I11 B(N = 

0), following the experimental procedure described in 0 3. Then, we investigated the 
wavenumbers and rotation frequencies of the cylinder- and/or disk-type disturbances 
observed in the quasi-static laminar-turbulent transitions from the above three initial 
flow modes. Each N value remained constant until the largest Reynolds number, 
RZaz = 20, reached in the present experiment. The characteristics of the disturbances 
obtained for N = 2 agreed with those reported in Nakabayashi & Tsuchida (1988~). 

Figure 7(a-c) shows the R* dependence of the wavenumbers of cylinder- and disk- 
type disturbances in laminar-turbulent transitions for N = 4,2 and 0, respectively. The 
cylinder-type disturbances, travelling waves (m), wave modulation (k), twists (T,) and 
spiral vortices (Sp) ,  are influenced by the different N values as follows. The 
wavenumber of the travelling waves changes with increasing R* in the same way for 
N = 4 and 2, i.e. m = 6+5-+0+ 1, but the transition Reynolds numbers change 
distinctly with N .  The wave modulation and twists occur for N = 4, but not for N = 
2. The spiral vortices, on the other hand, occur for N = 2, but not for N = 4. These 
results show that the number of toroidal vortices has a strong influence on the higher- 
order disturbances of the vortices, namely the secondary-flow direction and extent of 
the vortices have an important role in the cylinder-type disturbances. The twists 
described above appear within all four toroidal cells, and have a periodic rope-like 
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FIGURE 8. TG vortex flow I11 TS,(N = 4, S, = 1) with four toroidal vortices and one Stuart vortex 
at R* = 10.5. f , /S ,  (negative value) andf, are the rotation frequencies of the Stuart vortex and the 
inner sphere, respectively, in the laboratory. (a )  Photograph taken in the pole direction. (b)  Schematic 
of the photograph (a).  

structure similar to that in circular Couette flow (Andereck, Dickman & Swinney 
1983). The rotation frequencyf,/T, is almost 0.19 for T, % 18, independent of the R* 
value. 

Disk-type disturbances are also influenced by different N values. Shear waves (S,) 
occur for each of N = 4, 2 and 0, but the onset Reynolds number and wavenumber 
differ markedly with N .  The onset Reynolds number becomes smaller as the Ekman- 
type secondary flow extends a greater distance towards the equator. Stuart vortices 
(S,) occur for N = 4, but not for N = 2 and 0. Figure 8 shows the Stuart vortex 
( S ,  = 1) observed for 9 .56  R* < 11.8. This Stuart vortex has a clockwise spiral 
pattern from the pole to the equator, as reported by Sawatzki & Zierep (1970), 
Wimmer (1976) and Biihler & Zierep (1987), and develops near the pole 
(20" 5 0 5 50") in the Ekman-type secondary flow. The Stuart vortex is completely 
different from the shear wave, which has a counterclockwise pattern and develops 
within almost the whole Ekman-type secondary flow (refer to figures 1 and 9). The 
Stuart vortex in figure 8 rotates with a constant frequency in the direction opposite to 
the inner sphere; the rotation frequencyf,/S, is almost - 1, independent of the R* 
value. Wimmer (1976) and Biihler & Zierep (1987) reported that Stuart vortices are 
stationary, i.e. f , /S,  = 0 for /3 = 0.18. Hence, the rotation frequency depends on p. 

Interaction between the disk- and cylinder-type disturbances was observed in the 
range 11.8 < R* < 13 for N = 4, as shown in figure 7(a) .  First, at R* = 11.8, the 
wavenumber variations of Stuart vortices ( S ,  = 1 + 8) and twists ( T, FZ 18 + 27) 
occur simultaneously, together with their simultaneous rotation-frequency variations 
(f,/S, = - 1 + + 0.07, f T / T ,  = 0.19 + 0.14). It should be noted here that the Stuart 
vortices begin to rotate in the same direction as the inner sphere instead of in the 
opposite direction; and the Stuart vortices can rotate in either direction ( f , /S ,  < 0 
and > 0), depending on the Reynolds number. When R* reaches 12.4, a travelling 
wave and eleven shear waves occur with turbulence followed by temporal repetition of 
two flow modes, IIIT,S,(m = 0, T, M 27, S ,  = 8) and IVWTS,(m = 1 ,  T, = 0, 
S ,  = 11). In this temporal repetition, the Stuart vortices and twists alternate with the 
travelling wave and shear waves at intervals of about thirty minutes. This temporal 
repetition was observed near the pole, as shown in figure 9. Figure 9(a) shows Stuart 
vortices which have a clockwise spiral pattern from the pole to the equator. Figure 9(c) 
shows shear waves with the counterclockwise pattern. The transient crossing of the 
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FIGURE 9. Temporal repetition of two flow modes: a non-turbulent twisted T G  vortex flow with four 
toroidal vortices, about twenty-seven twists and eight Stuart vortices (I11 Tw S,(N = 4, T, z 27, S ,  = 
8)); and a turbulent wavy toroidal T G  vortex flow with four toroidal vortices, one azimuthal wave 
and eleven shear waves (IV WTS,(N = 4, m = 1, S,  = 1 l)), a t  R* = 12.5. f , / S , ,  f,/S, andf, are the 
rotation frequencies of the Stuart vortices, the shear waves and the inner sphere, respectively, in the 
laboratory. (a) Photograph of I11 T, S,(N = 4, T, z 27, S ,  = 8). (b)  Photograph of the superposition 
of I11 T, S, and IV WTS,. (c) Photograph of IV WTS,(N = 4, m = 1, S,  = 11). (d )  Schematic of the 
temporal repetition of I11 T, S, (left side) and IV WTS, (right side). 

Stuart vortices and the shear waves is presented in figure 9(b). The temporal repetition 
finishes at R* = 13 with the disappearance of the Stuart vortices and twists. 

Next, we consider in figure 10 how the relationship between the rotation frequency 
f,/m of travelling waves and the R* value differs with N. The rotation frequency is 
independent of N for R* 5 2.2, but it depends on N for R* 2 2.2 although it has a 
similar tendency to decrease with an increase of R* for both N = 4 and 2. The rotation- 
frequency variation with the wavenumber is different between N = 4 and 2, i.e. it is 
stepwise for N = 4 but not for N = 2. The rotation frequency for m = 5 definitely 
differs between N = 4 and 2. A similar result was reported by King et al. (1984) in 
circular Couette flow, in which the rotation frequency of travelling azimuthal waves 
differs with the number of Taylor vortex cells. In the present study, the fw/m value for 
N = 2 is smaller than for N = 4. This is conjectured to be due to the fact that the 
travelling waves for N = 2 coexist with the spiral vortices, which have a lower rotation 
frequency (about 0.43) than the travelling waves (Nakabayashi & Tsuchida 1988 a). 
Therefore, the travelling waves for N = 2 are influenced by the spiral vortices, so that 
the fw/m value for N = 2 is smaller than for N = 4. 

The rotation frequencies of disk-type disturbances are also influenced by N.  Figure 
11 shows that the rotation frequencyf,/S, of shear waves depends on N as well as on 
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FIGURE 10. Reynolds-number dependence of the rotation frequency of the travelling waves observed 
for N = 4 (-) and N = 2 (---). Results for N = 4: @, m = 6 (k  = - 1) in IIIMWT; a, rn = 5 in 
I11 WT; 0 ,  m = 6 (k  = - 1) + 6 in I11 MWT+ I11 WT (the wave modulation with k = - 1 alternately 
appearing and disappearing in six travelling azimuthal waves); 0, m = 6 in I11 WT. Results for 
N = 2: 6 ,  rn = 6(Sp = 2-0 for 1.71 < R* < 1.93 and S ,  = 1-0 for 1.93 < R* < 2.80) in I11 WTS,; 
r], m = 5(Sp = 1-0) in 111 WTS,. 

5 10 15 20 
R* 

FIGURE 11. Reynolds-number dependence of the rotation frequency of the shear waves observed for 
N = 4  (-), 2 (---) and 0 (-----). Results for N = 4 :  0, S , = l l ( r n = l )  in IIIT,S,+ 
IVWTS,(12.4 < R* < 13.0) and IVWTS,(R* 3 13.0). Results for N = 2: 0,  S, = 14(m = 1) in 
IVWTS,; 0,  S ,  % 6(m = 1) in IVWTS,. Results for N = 0; A, S, = 11 in HIS,; A, S,  = 12 
in IVS,. The dotted line shows that the rotation frequencies were unmeasurable owing to developing 
chaos. 

the wavenumber S,. The rotation frequency increases with wavenumber for both 
N = 2 and 0. This occurs when R* is increased in the case N = 0 and when R* is 
decreased for N = 2. 

5. Hysteresis phenomenon 
It is widely accepted that hysteresis occurs in closed flows. In this section we consider 

how hysteresis appears in spherical Couette flow. Figure 12 shows two examples of 
hysteresis obtained when the Reynolds number R* is first increased from an initial flow 
mode and then decreased quasi-statically, in the R*, N ,  m parameter space. N is the 
number of toroidal TG vortex cells and m is the wavenumber of travelling waves. The 
first example obtained for the initial flow mode with a state of N / m  = 4/0 at R* = 1.13 
(point A on figure 12) is as follows. When R* is first increased from 1.13 (A) to 4.42 
(E), we observe successive state transitions, 4/0 + 4/6(k = - 1) (B) + 4/6 (D) + 4/5 
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FIGURE 12. Two examples of the hysteresis phenomenon shown in the R*, N ,  m parameter space. 
The N / m  state, flow regime and R* value at each point are as foollows: A, 4/0 in I I T  at R* = 
1.13; B, 4/6(k = - 1) in IIIMWT at R* = 1.77; C, 4/6(k = - 1) in IIIMWT at R* = 2.50; D, 4/6 
in 111 WT at R* = 2.80; E, 4/5 in I11 WT at R* = 4.42; F, 4/0 in HIT  at  R* = 7.22; 1, 2/0 in I IT  
at R* = 1 ;  J, 2/6(Sp = 2-0) in IIIWTS, at R* = 1.71; K, 2/5(S, = 1-0) in 111 WTS, at  
R* = 2.80; L, 2/0(Sp = 1-0) in HITS, at R* = 5.05; X, 2/0 in IIIT at R* = 7; Y, 2/4 in I11 WT at 
R* = 6.46; Z, 4/6(k = - 1) in 111 MWT at R* = 2.62. The transient N / m  state and R* value at  each 
point are as follows: C‘, 4/5 at R* = 2.50; E‘, 4/6 at R* = 4.42; K’, 2/6(Sp = 2-0) at R* = 2.80; 
L‘, 2/5(S, = 1-0) at R* = 5.05; Z‘, 214 at R* = 2.62. 

(E), where m changes with R*, but N remains constant. Next, R* is decreased from the 
4 /5  state at E, and the 4/5  state is maintained until R* = 2.50 where the state transition 
from 4/5  (C’) to 4/6(k = - 1) (C) occurs. Therefore, a hysteresis loop is completed 
between E and C. (If R* is increased from the 4/5 state at E, the 4 /5  state continues 
until R* = 7.22 where the 4 /0  state (F) is obtained.) 

Figure 13 (a-c) shows the wavenumber-increase mechanism for the travelling waves 
in the above transition, N / m  = 4/5 (C’) + 4/6(k = - 1) (C), where fis elapsed time and 
t( = A  i) is its dimensionless time scaled by the rotation period of the inner sphere. 
First, one wave (labelled 5 )  of the five travelling azimuthal waves shown in figure 13 (a) 
becomes flat and stretches in the azimuthal direction #, as shown in figure 13 (b). Next, 
the wave divides in half to become two waves (labelled 5 and 6), and consequently six 
azimuthal waves are completed, as shown in figure 13 (c). The modulation ( k  = - 1) of 
the six azimuthal waves fully develops after a few minutes. The wavenumber-decrease 
mechanism for the travelling waves in the state transition from 4/6  (E’) to 4/5  (E) at  
R* = 4.42 is the reverse of the increase mechanism described above: two of the six 
waves first become flat, then become one wave. 

The second example of hysteresis is obtained, as shown in figure 12, for the initial 
flow mode with a state of N / m  = 2/0 at R* = 1 (I). When R* is first increased from 
1 (I) to 7 (X), we obtain m = 6 between J and K’, m = 5 between K and L’ and 
m = 0 between L and X, keeping N = 2. Next, R* is decreased from 7 (X) to just above 
2.62 (Z), and we obtain m = 4 between Y and Z ,  still keeping N = 2. Hence, we 
observe the hysteresis by which different m values are obtained for cases with both 
increasing and decreasing R*. This hysteresis is closely related to the fact that different 
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FIGURE 13. Wavenumber-increase mechanism for the travelling azimuthal waves the state 
transition from N / m  = 4/5 to 4/6(k = - 1) at R* = 2.50. The elapsed time i(t =f, i) increases 
downward, and the azimuthal angle q5 increases leftward. q5 is measured in the laboratory and 
increases in the direction of sphere rotation. The vortex outflow and inflow boundaries are shown by 

and 0, respectively. The travelling waves on the outflow boundary at the equator are 
schematically drawn below each photograph. Successive waves around the annulus in the direction 
of the wave rotation are numerically indicated (1-m). The diamond indicates the position of the 
equator. (a) Five travelling azimuthal waves at i = 0 s ( t  = 0). (b)  Transient waves at i = 11 s ( t  = 
4.1). (c) Six travelling azimuthal waves at i = 24 s ( t  = 8.5). (The modulation fully develops after a 
few minutes.) 

numbers of spiral vortex pairs, S,, are obtained in both cases, i.e. S ,  = 2-0 (for 
m = 6, 5 )  or S ,  = 1 - 0 (m = 5 )  in the case with increasing R* but S, = 0 - 0 (m = 4 )  
for decreasing R*. 

When R* is further decreased to just 2.62 (Z), then N increases from 2 to 4 (Z’ + Z) ,  
and consequently we obtain the travelling waves with m = 6 (k  = - 1) described 
previously. This increase of N shows that, without spiral vortices, the four-vortex flow 
in which the vortex outflow boundary is located at the equator is more stable than the 
two-vortex flow in which the vortex inflow boundary is located at the equator. Figure 
14 (a-d) shows the cell-number-increase mechanism for the toroidal vortices in the 
above transition from Z’ with N/rn = 2 /4  to Z with 4/6(k = - 1 ) .  Figure 14(a) shows 
the initial state with N = 2. The cell-number increase is triggered by a new vortex which 
occurs on the inner-sphere wall in the central part of the upper cell of two toroidal 
vortex cells, as shown in the schematic of figure 14(b). Next, the newborn vortex grows 
toward the outer-sphere wall and simultaneously stretches in the azimuthal direction, 
as shown in figure 14(c). Finally, the newborn vortex develops into a toroidal vortex 
within the upper cell and consequently makes the upper cell divide into three toroidal 
vortex cells, shown in figure 14(d).  Subsequently, six modulated azimuthal waves begin 
to develop on the vortex cells. The phenomenon described above shows a kind of 
dislocation. 
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FIGURE 14. Cell-number-increase mechanism for the toroidal TG vortex cells in the state transition 
from N / m  = 2/4 to 4/6(k = - I )  at R* = 2.62. The elapsed time f ( t  =f, f )  increases downward, and 
the azimuthal angle $ increases leftward. The vortex outflow (0) and inflow (0) boundaries are 
schematically drawn by solid and dashed lines, respectively, below each photograph. The meridian 
cross-section of the TG vortices is also indicated schematically. The newborn vortex which occurs in 
the central part of the upper cell of two toroidal TG vortex cells is schematically indicated by 
hatching. The diamond indicates the position of the equator. (a) Two toroidal TG vortex cells at 
f =  0 s ( t  = 0). (b) A newborn vortex is attached to the inner-sphere wall at i =  3.7 s ( t  = 1.5). (c )  
The newborn vortex is developing toward the outer-sphere wall and in the streamwise ($) direction 
at f =  16 s ( t  = 6.2). ( d )  Four toroidal TG vortex cells at i = 18 s ( t  = 6.9). 
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FIGURE 15. The hysteresis phenomenon appearing in the rotation frequency of travelling waves, 
corresponding to the hysteresis phenomenon shown in figure 12. Refer to figure 12 for labels A, B, 
C, ..., and to figure 10 for symbols 0 ,  0 ,  ... . The symbol 0 shows the data for rn = 4(N = 2) in 
111 WT(2.62 c R* < 6.46). 
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Hysteresis appears not only in the above-described N / m  state but also in the rotation 
frequencyf,/m of travelling waves shown in figure 15. The labels A, B, C, . . . in figure 
15 correspond to those in figure 12. A hysteresis loop appears between E and C for 
N = 4. This is because the rotation frequency of travelling waves depends on the 
wavenumber m. For the same reason, hysteresis also appears for N = 2. 

6. Conclusions 
In spherical Couette flow with the clearance ratio p = 0.14, we have considered how 

the characteristics of non-axisymmetric periodic disturbances in higher flow modes 
depend on the following three factors : (i) the rate of increase of the Reynolds number; 
(ii) the number of toroidal TG vortex cells in an initial flow mode; and (iii) the 
Reynolds-number history. Consequently, the following conclusions have been 
obtained. 

The final flow mode at the Reynolds number R$ is independent of the rate of increase 
for 1 < R% < 1.13. For R: 1.13, however, the final flow mode does depend on the 
increase rate, so that a variety of final flow modes can be seen. This is because the final 
flow mode is determined by the relationship between the time taken to reach the R$ 
value and the viscous diffusion time required for development of TG vortices at that 
RX value. In particular, provided that the time of increase is smaller than the viscous 
diffusion time for R$ 2 3.3 where the viscous diffusion time is more than 7.5 times the 
spin-up time, the supercritical basic flow I11 B is observed as the final flow mode. 

The number N ( N  = 4,2,0) of toroidal vortex cells influences the rotation frequency 
and wavenumber for the cylinder-type disturbances as well as for the disk-type 
disturbances. Thus, the direction of secondary flow at the equator and the extension 
of the Ekman-type secondary flow have an important role in both the cylinder- and 
disk-type disturbances. This is linked with the sensitivity to the initial conditions in the 
transition to chaos. 

Hysteresis due to different Reynolds-number histories appears even with a quasi- 
static increase or decrease of R*. The phenomenon is manifested not only in the 
numbers N (toroidal vortex cells) and m (travelling waves) but also in the rotation 
frequency of the travelling waves. The latter hysteresis is due to the former, because the 
rotation frequency depends on the wavenumber. 
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